
ELEMENTARY THEORY OF THE BOILING LAYER 

M. A. Gol'dshtik UDC 536.46 

This study is an attempt at a qualitative examination of the phenomena of a boiling layer,  based 
on certain probable hypotheses and est imates.  It is not suggested that the results  obtained be consid- 
ered final. Many studies have been dedicated to the problems of the boiling layer .  An incomplete bib- 
liography is contained in [1]. But at present  there is no physical theory of the boiling layer which 
would describe the fimdamental principles of the phenomena observed, even though many studies have 
been directed in this direction, for example [2]. The main difficulty encountered is that the boiling layer 
is a dissipative system, with the mechanism which generates chaotic particle motion m~mown. There 
are no conservation integrals such as the energy integral, and thus a formulation analogous to the ki- 
netic theory of gases is inapplicable. 

I. Basic Facts. We will imagine a vertical cylindrical tube, in the interior of which is a layer of 

identical globules, resting on a grid. Through the tube from bottom to top there passes a flow of an incom- 
pressible fluid, for example, air or water. This flow produces a lifting force acting upon the layer of 
particles opposite to the force of gravity. When the lifting force becomes equal to the gravitational force 
the layer becomes, so to speak, "weightless." With a further increase in flow velocity a situation is 
possible in which the layer, not changing its structure, may begin to move upward, like a piston. However, 
in practice this does not occur; the layer expands, the particle concentration therein decreases, the inter- 
particle distance increases, and so does the flow velocity in the layer, and thus the lifting force decreases. 
Within the layer there develops apartiele configuration such that the lifting force again equals the gravita- 
tional force. 

Observations have shown that in a boiling layer various regimes are possible, depending on the flow 
rate and properties of the medium and particles. The most basic of these modes is the so-called homo- 
geneous boiling layer. In this case the flow in the layer is distributed almost uniformly over the cross- 
section, almost the entire particle mass is concentrated in a column of definite height, possessing a well 
defined surface, above which exists "vapor," where the particle concentration is significantly lower than in 
the layer. Not infrequently one can observe oscillations and waves on the layer surface similar to those 
on the surface of water, whence the boiling layer is also called the quasi-liquid layer. The particle concen- 
tration in a sufficiently thick column has practically no variation with height; in the vapor phase the co~1- 
centration decreases rapidly with height. Thus the problem of a satisfactory theory is complicated by the 

fact that it must describe a phase transition, and the differential equation describing particle concentration 
as a function of height must allow discontinuous solutions. 

2. Geometry of the Layer. in order to derive the equations describing the processes in the layer it 
is necessary to determine the mean distance between particles l and the minimum traversable section of 
the layer @ for a given concentration of particles ~ or porosity e =l-w, which is the amount of empty 
space per unit volume of the layer. 

It is known [i] that the mean relative traversable area is ~. The minimum relative traversable area 

$, speaking generally, depends on the distribution of particles in the layer. We will examine two limiting 
cases: a cubic particle lattice, the rarest particle distribution in the layer; and a tetrahedral lattice, one 
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Fig.  2 

of t he  m o s t  d e n s e  s p h e r e  p a c k i n g s  p o s s i b l e .  We  wi l l  a s s u m e  tha t  t h e  r e a l  
p a r t i c l e  d i s t r i b u t i o n  i s  s o m e w h e r e  be tween  t h e s e  two l i m i t i n g p o s s i b i l i t i e s .  

S i m p l e  g e o m e t r i c  c o n s i d e r a t i o n s  p e r m i t  the  e s t a b l i s h m e n t  of the  
f o r m u l a s  

l / d = ] (T) = (to/t) ~/' - -  I (2.1) 

= I - -  (i - -  ~0) (t / %)'/' (2.2) 

w h e r e  d i s  t he  p a r t i c l e  d i a m e t e r  and  l i s  t he  i n t e r p a r t i c l e  d i s t a n c e .  

T h e  v a l u e s  70 and ~0 c h a r a c t e r i z e  a r e a l  l a y e r  in a d e n s e  s t a t e  wi th  
t he  s a m e  r e l a t i v e  p a r t i c l e  d i s t r i b u t i o n .  We wi l l  a s s u m e  tha t  the  v a l u e  of 
70 c o r r e s p o n d s  to  a g lobu le  c o n c e n t r a t i o n  in a f r e e  p a c k i n g  of r a n d o m  
c h a r a c t e r .  A c c o r d i n g  to  e x p e r i m e n t a l  data ,  T 0 =0.6.  

D i r e c t  e x p e r i m e n t a l  d e t e r m i n a t i o n  of ~b 0 i s  d i f f icu l t ,  and so we  sha l l  
u s e  t he  fo l lowing  i n t e r p o l a t i o n s ,  a s s u m i n g  tha t  t he  r e a l  v a l u e s  of ~0 and 
r 0 m a y  be  found f r o m  the  l i n e a r  f o r m u l a s  

% = x ~1"-~ (i  - -  x)~,  ~0 = x~l q- (t - -  x)q~2 (2.3) 

H e r e  x i s  the  d e g r e e  of  c l o s e n e s s  of  the  a c t u a l  p a c k i n g  to cub ic ,  the  s u b -  
s c r i p t  i c o r r e s p o n d s  to c u b i c a l  pack ing ;  and the s u b s c r i p t  2 to t e t r a h e d r a l ~  

t0 = %  a t  r = i ,  % = t ~  a t  x = 0  

E l i m i n a t i n g  x f r o m  t h e s e  e x p r e s s i o n s  and u s i n g  the  n u m e r i c a l v a l u e s  
71 =0.524,  r =0 .215 ,  T 2 =0.74,  ~2 =0.096,  we obta in  r =0.17.  C o n s e q u e n t -  
ly ,  Eq. (2.2) can  be  w r i t t e n  in the  f o r m  

= i --  i . i 7v  ~/, (2.4) 

T h e  c u r v e  of Eq. (2.4) i s  p r e s e n t e d  in Fig .  1. A l s o  shown by a d a s h e d  l ine  i s  the  c u r v e  of the  f o r m u l a  
o b t a i n e d  by  S. L.  L e i b e n z o n  [1] 

%b = 0.625 (1 - -  t) l'~ 

which  i s  o b v i o u s l y  of an e m p i r i c a l  n a t u r e  and  not a p p l i c a b l e  fo r  s m a l l  T. 

3. The  Equa t ion  of  A v e r a g e  Mot ion  and I t s  A n a l y s i s .  K the  l a y e r  of p a r t i c l e s  i s  r e g a r d e d  a s  a gas ,  
t hen  f o r  t he  mean  mot ion  i t  i s  p o s s i b l e  to  w r i t e  a l l  t h e  d y n a m i c  equa t ions  of a con t inuous  m e d i u m .  H o w e v e r ,  
we w i l l  l i m i t  o u r s e l v e s  to  t he  o n e - d i m e n s i o n a l  c a s e  and  m o r e o v e r  a s s u m e  tha t  t he  l a y e r  i s ,  on the  a v e r a g e ,  
a t  r e s t .  Then  the  m o m e n t u m  equat ion  r e d u c e s  to  t he  equa t ion  

dq / dy  = .r ( F  c - -  PTg) (3.1) 

H e r e  t h e  y a x i s  i s  d i r e c t e d  v e r t i c a l l y  u p w a r d ,  q i s  t he  p r e s s u r e  of t he  p a r t i c l e  gas ,  i . e . ,  t he  m o m e n t u m  
t r a n s f e r r e d  t h r o u g h  a uni t  a r e a  in uni t  t i m e  by  the  p a r t i c l e s ,  PT i s  t he  d e n s i t y  of the  s o l i d  p h a s e  m a t e r i a l ,  
g i s  t h e  a c c e l e r a t i o n  of  g r a v i t y ,  and  F c i s  t h e  r e s i s t a n c e  f o r c e  of a uni t  v o l u m e  of t h e  l a y e r .  

F o r  t he  r e s i s t a n c e  f o r c e  a c t i n g  on a s ing le  p a r t i c l e ,  w e  t a k e  the  e x p r e s s i o n  

nd~' P [v~ ~ (3.2) 

w h e r e  p i s  the d e n s i t y  of t h e  m e d i u m ,  v 0 i s  i t s  v e l o c i t y  r e l a t i v e  to  an e m p t y  sec t ion ,v0 /~  i s  t he  v e l o c i t y  
at  t h e  m i n i m u m  t r a v e r s a b l e  s ec t i on ,  and  ~ i s  t he  p a r t i c l e  r e s i s t a n c e  coe f f i c i en t .  

T h e  v a l u e  of ~ d e p e n d s  on t h e  R e y n o l d s  t e r m  Re =v0d/$  v,  w h e r e  ~ is  t he  coe f f i c i en t  of k i n e m a t i c  
v i s c o s i t y ,  but ,  a s  t h e  d a t a  of [1] shows ,  i s  i ndependen t  of p o r o s i t y  and p a r t i c l e  c o n f i g u r a t i o n  in t h e  l a y e r .  
M o r e o v e r ,  Eq. (3.2) p r o v e s  to  be  a p p l i c a b l e  to  t u b u l a r  b e a m s  with  the  s a m e  v a l u e  of ~ .  T h e r e f o r e  i t  m a y  
b e  a s s u m e d  tha t  t he  func t ion  ~ (Re) i s  u n i v e r s a l .  W i t h  a g rowth  in Re i t  d e c r e a s e s ,  but  f o r  Re  > 1000 

s t a b i l i z e s  n e a r  a v a l u e  of 0.5. 

S ince  T i s  the  f r a c t i o n  of s o l i d  p h a s e  p e r  uni t  v o l u m e ,  t he  n u m b e r  of p a r t i c l e s  p e r  uni t  v o l u m e  wi l l  
b e  g iven  by  
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n = 6~ / nd a (3.3) 

Multiplying Eq. (3.3) by Eq. (3.2) and substituting in Eq. (3.1) we obtain the final express ion 

d-y : ~ d- ~ ~- -- PTg ---- ~R (~) (3.4) 

In this equation there  are  two unknowns, T and q. In o rder  to complete the sys tem it is necessa ry  to 
know the function q(T). To do this, in the following development we will re turn to the mechanics of the 
chaotic motion of par t ic les  in the layer .  However, the general  charac te r  of the function q(7) can be es tab-  
l ished f rom Eq. (3.4) alone. Let  v 0 =0 initially, then T =T0, @ =$0 and q(y) is a decreas ing l inear  function, 
while q(h) =0, h being the height of the immobile layer .  With an increase  in v 0 the charac te r  of the function 
q(y) does not change until the equality 

4 d p ~- =PTg 

is reached. 

At that t ime q(y) -~ 0. With fur ther  increase  in v 0 the l ayer  begins to boil and the function q(y) becomes  
posit ive due to the chaotic par t ic le  motion which has begun. Let the value of v 0 be fixed and such that the 
boiling l ayer  corresponding there to  will be sufficiently thick. We assume that the function q{T) in the region 
of la rge  T is monotonic on some interval 7. Two cases  are possible:  

dq a) ~--~q,>o, b)-~-<O 

We will now write Eq. (3.4) in the form 

~-V = ~ (~) 

Considering Eq. (2.4), it is easy to prove  that R(T) is a monotonic increasing function of T. We wilt 
denote by T,  that value of T such that R(T,) =0, assuming that T, l ies in the chosen interval of la rge  7. 
Let the ini t ial  value ~(0), belonging to the same interval,  be given for Eq. (3.5). Three  cases  a re  possible:  

(0)>T,, ~(0)=~,, T(0)<~, 

Let case a) be real ized,  then for T (0) > T,  R (~-) > 0 and according to Eq. (3.5) d ~ / d  y > 0. Thus the layer  
will condense i tself  in height. For  the case ~(0) < 7 ,  the l ayer  will rar i fy.  Thus case a) is unstable. In 
case  b) any change in T (0) f rom ~,  will t e n d t o  a reduction, i.e., the concentrat ion in this case will tend 
to become constant over the height of the layer. It is just this type of behavior" that is characteristic of a 
real layer, and thus it can be concluded that in the region of large T the function q(7) is decreasing. On 
the other hand, at low concentration levels the behavior of the particle gas should be the same as that of a 

usual molecular gas, for which under normal conditions pressure increases with an increase in density. 
Thus over its entire range the function q(~-) must be nonmonotonic, having a maximum. 

4. Equation of State of a Dense Layer_z _. We will examine a unit area located, for example, on the wall. 
Let the mass of particle be m=i/6 ~d3pT and its chaotic velocity at the moment of impact on the area be c. 
In elementary kinetic theory it is assumed that in a unit time the area is reached by all particles located in 
a parallelepiped with height c. It is further assumed that the particles are points and screening effects are 
not considered. 

Such assumptions are impermissible for a dense layer. In fact, with the aid of Eq. (2.1) we will esti- 
mate the concentration value at which the interparticle distance is less than the diameter. This estimate 
gives ~ > 0.075 (g < 0.925). Thus the inequality I/d < 1 is valid even for quite rarefied layers, so that in a 
dense layer complete screening occurs, i.e., in the process of collision with the wall only one layer of 
particles participates, that one directly adjoining the area. The mean number of particles in this layer is 
4T/v d 2. The momentum transferred to the wall by a single particle is 2inc. Over a time t between colli- 
sions the particle traverses a distance 21, consequently the time t =21/c. Thus one particle in unit time 
transfers to the wall a momentum of me2/l, and all particles located next tothe area exert a pressure 
thereon of 

where f ( T )  is given by Eq. (2.1). 

q = 2APTc~'~//( 'O ( 4 . 1 )  
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Equation (4.1) is the sought for  equation of state.  In it occurs  the un-  
T f known chaotic pa r t i c l e  ve loc i ty  c, whose determinat ion is  the main difficul-  

/ ty  of the ent i re  theory .  The bas ic  complicat ion l ies  in explaining the mech -  
an i sm whereby energy  is  t r a n s f e r r e d  f r o m  the initial flow to the chaotic 
pa r t i c l e  motion, i .e. ,  in set t ing up the energy  balance equation. 

5. An Evaluation of the F o r c e s  Acting on a Pa r t i c l e  in Chaotic 
Mot ionand  the Function q(~). The hydraul ic  r e s i s t ance  fo rce  acting o n a  
par t i c le  due to its chaotic motion is of the o rde r  of 

Fig. 3 where  u is the re la t ive  ve loc i ty  between pa r t i c l e  and gas. It may be 
a s sumed  that  the hydrodynamic  in teract ion fo r ce s  between pa r t i c l e s  a r e  
of the s a m e  order .  

Inasmuch as the p a r t i c l e s  inevitably coll ide with each other  and the wal ls ,  they must  have a rotat ion 
acqui red  in the coll ision p roce s s .  In flowing around the ro ta t ing  pa r t i c l e s  the re  develops a t r a n s v e r s e  
Magnus force ,  whose value is given by the express ion  [3] 

] ~  = I /3pnd~uw 

where  w is the angular  ve loc i ty  of the par t ic le .  To de t e rmine  w we use  the pr inc ip le  of equal distr ibution 
of energy  over  degrees  of f reedom,  which occurs  under  conditions of s ta t ic  equi l ibr ium and for  rough 
spher i ca l  molecules ,  der ived  in [4]. In th is  case  the pr inc ip le  leads to an equality of t rans la t iona l  and 
rotat ional  energy  for  the par t ic le ,  inasmuch as ~ t h e r e  a r e  six deg rees  of f reedom.  

Thus 

1/2 mc 2 = 1/2 I w ~ 

where  I = 0.1 md 2 is the moment  of iner t i a  of the sphere .  

F r o m  this  we find 

wd = Vi~  ~ (5.1) 

In considera t ion of Eq. (5.1) the express ion  for  the Magnus fo rce  t akes  on the f o r m  

] ~  = 1/a V'-i-Opad2uc (5.2) 

Compar ing  this  express ion  with f c ,  we find 

: IM 8 V " ~  
1 - - ~ = ~ = i 6 . 9  at ~=1/2 

Thus we see  that  the Magnus fo rce  exceeds  the r e s i s t a n c e  force  by more  than one order .  Also it 
ac ts  essen t ia l ly  pe rpend icu la r ly  to the flow and t h e r e f o r e  gives  the fundamental  contribution to the chaotic 
pa r t i c le  motion. 

The above makes  it poss ib le  to cons ider  the  following model of chaotic pa r t i c l e  motion in the l ayer .  
The init ial  chact ic izat ion is produced by the hydrodynamic  instabi l i ty  of the r e s t  configuration. However,  
th is  instabi l i ty  only p lays  the role  of a t r igger .  As soon as the pa r t i c l e s  begin to coll ide with each other  
the Magnus fo rce  acts ,  fulfi l l ing the function of t r a n s f e r r i n g  energy  f r o m  the flow to the l ayer .  

If we a s su m e  c <<u, as is actual ly  the  case ,  the re la t ive  ve loc i ty  and the mean flow veloc i ty  in the 
l a y e r  a r e  comparab le  

U ~ UO/E 

Then the express ion  for  the Magnus force ,  Eq. (5.2), t akes  on the f o r m  

The work  p e r f o r m e d  by this  fo rce  on a f r ee  path length, which for  a dense l aye r  may be equated with 
the value l ,  is 

~ ~ d (5.3) AM = - - - ~  pnd ~ 
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With the dominant role of the Magnus force  this energy can not be dissipated due to the hydraul ic  r e -  
s is tance forces .  There fo re  it remains  to be assumed that it is lost  in inelastic collisions of par t ic les .  If 
the precol l is ion veloci ty had a value of c, the postcoll is ion veloci ty  becomes  kc, where the value of k for a 
head-on collision coincides with the Newton regenerat ion coefficient, while in other cases  it must be ca l -  
culated with considerat ion of the scat ter ing angle, which will not be examined here. Equating the energy 
loss  f rom inelastic coll isions 1/2 mc 2 ( 1 - k  2) to Eq. (5.3) we obtain 

F~ Y~ p ~0 c = ~ -  ~) ~ ~- ! (~) (5.4) 

Substituting Eq. (5.4) in Eq. (4.1) we obtain the final express ion q ( r )  

to7 P ,ovo~F(~),  F ( ~ )  = �9 - ( t - ~ ) ~  
q "=' ( t -  k~)2 PT 

(5.5) 

The function F(T) is shown in Fig. 2. The function q(T) differs f rom F (T) only by a scale factor.  

This function q (7) fulfills all the requirements  established in Sec. 3. However, in the range of ve ry  
small  r the function must be co r rec ted  since the relat ionships obtained are  not suitable for s t rongly r a r e -  
fied layers .  

6. Analysis  of Results  Obtained. As is evident f rom Fig. 2, the maximum value of q (r) is attained at 
r = r  2 =0.35 (e =0.65). In the figure r i cor responds  to vapor.  Inasmuch as it is necessa ry  for  stabili ty of a 
dense layer  that the inequality dq/dr  < 0 be fulfilled, such a l ayer  can exist only if r ,  > 0.35. This indicates 
that the inequality must be sat isf ied so that 

v0~0.686]/prp-lgd at ~ = 0 . 5  

If we introduce the rotational veloci ty  

V 4 PT gd 
v b ~  3 p 

the requi rement  for the existence of a dense l ayer  may be wri t ten in the form 

0.17 ~ vo/vb < 0.42 

The lef t -hand side of this inequality cor responds  to dense packing at r e =0.6 and r =0.17. 

In o rde r  to solve Eq. (3.5) with considerat ion of Eq. (5.5) an initial condition must be given, for  
example, in the fo rm r (0) as well as a condition at infinity r(oo) =0. Moreover,  the total par t ic le  mass  in 
the layer  must be given 

c~ 

M : PT ~ "~dy 
o 

However,  instead o-f M it is more  convenient to set the height of the dense column h and uniquely 
determine M over the height. 

If T(0) > 0.35, the solution of Eqo (3.5) for increasing y will tend to the value T,  and prac t ica l ly  
attains this  value for a sufficiently thick layer .  At y = h the concentration drops discontinuouslyand a phase 
t rans i t ion  will be accomplished on the lef t -handbranch  of the curve q(r) ,  where  d q / d ?  > 0. The p re s su re  q 
at the phase boundary does not suffer a discontinuity. Thereaf ter ,  in accordance with Eq. (3.5), the concen- 
t ra t ion  will decrease  quickly to ze ro  with increas ing  y. The course  of the p roces s  is depicted schematical ly  
by the arrows in Fig. 2. 

The initial condition determines the properties of the lattice supported. For real lattices with a sharp 

draft it is evident that r (0) < r,. The same effect should be produced by lattice vibration. In the ideal case 

of an "adiabatic" lattice, dq/dy=0 at y =0 and y (0) =7,. In this case the concentration is constant over the 
entire height of dense column. An example of the function T (y) for this case is shown in Fig. 3. The 
particle mass in the layer is found from the formula 

M =pT(T,.h + ~ ,dy) 
h 
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The grea ter  the equilibrium concentration T, the lower the vapor density above the layer.  The concentration 
T .  =0.35 plays a critical role. For 7 ,  < 0.35 independent of the initial conditions the entire layer will be in 
the vapor phase with concentration decreasing with height. However, the same situation ar ises  for 7 .  > 
0.35, if ~ (0) < 0.35. 

Thus, the proposed theory reflects the processes  in a boiling layer,  including the l iquid-vapor  phase 
transition, in a qualitatively t rue  fashion. Quantitative definitions and comparison with experiment have not 
been conducted since the basic relationships were obtained only in coarse approximations. They require 
refinement by statistical methods. This is especially true of the parameter  k, which has not been deter-  
mined in this study. 
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